skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hong, Zhiqing"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 30, 2026
  2. Accurate road networks play a crucial role in modern mobile applications such as navigation and last-mile delivery. Most existing studies primarily focus on generating road networks in open areas like main roads and avenues, but little attention has been given to the generation of community road networks in closed areas such as residential areas, which becomes more and more significant due to the growing demand for door-to-door services such as food delivery. This lack of research is primarily attributed to challenges related to sensing data availability and quality. In this paper, we design a novel framework called SmallMap that leverages ubiquitous multi-modal sensing data from last-mile delivery to automatically generate community road networks with low costs. Our SmallMap consists of two key modules: (1) a Trajectory of Interest Detection module enhanced by exploiting multi-modal sensing data collected from the delivery process; and (2) a Dual Spatio-temporal Generative Adversarial Network module that incorporates Trajectory of Interest by unsupervised road network adaptation to generate road networks automatically. To evaluate the effectiveness of SmallMap, we utilize a two-month dataset from one of the largest logistics companies in China. The extensive evaluation results demonstrate that our framework significantly outperforms state-of-the-art baselines, achieving a precision of 90.5%, a recall of 87.5%, and an F1-score of 88.9%, respectively. Moreover, we conduct three case studies in Beijing City for courier workload estimation, Estimated Time of Arrival (ETA) in last-mile delivery, and fine-grained order assignment. 
    more » « less
  3. Human mobility data may lead to privacy concerns because a resident can be re-identified from these data by malicious attacks even with anonymized user IDs. For an urban service collecting mobility data, an efficient privacy risk assessment is essential for the privacy protection of its users. The existing methods enable efficient privacy risk assessments for service operators to fast adjust the quality of sensing data to lower privacy risk by using prediction models. However, for these prediction models, most of them require massive training data, which has to be collected and stored first. Such a large-scale long-term training data collection contradicts the purpose of privacy risk prediction for new urban services, which is to ensure that the quality of high-risk human mobility data is adjusted to low privacy risk within a short time. To solve this problem, we present a privacy risk prediction model based on transfer learning, i.e., TransRisk, to predict the privacy risk for a new target urban service through (1) small-scale short-term data of its own, and (2) the knowledge learned from data from other existing urban services. We envision the application of TransRisk on the traffic camera surveillance system and evaluate it with real-world mobility datasets already collected in a Chinese city, Shenzhen, including four source datasets, i.e., (i) one call detail record dataset (CDR) with 1.2 million users; (ii) one cellphone connection data dataset (CONN) with 1.2 million users; (iii) a vehicular GPS dataset (Vehicles) with 10 thousand vehicles; (iv) an electronic toll collection transaction dataset (ETC) with 156 thousand users, and a target dataset, i.e., a camera dataset (Camera) with 248 cameras. The results show that our model outperforms the state-of-the-art methods in terms of RMSE and MAE. Our work also provides valuable insights and implications on mobility data privacy risk assessment for both current and future large-scale services. 
    more » « less